
Drone Mounted Object
Detection and Recognition
using Machine Learning and

Infrared Sensors
Derek Murdza, Cannen Carpenter, Jazmine

Roman, and Kevin Nilsen

University of Central Florida, Department of
Computer and Electrical Engineering,

Orlando, Florida, 32816, U.S.A.

Abstract - This paper presents the methodology of
developing a manual drone utilizing Python to classify
objects in conjunction with infrared distance sensing for
distance detection. There are multiple engineering
specifications that are to be met following the completion of
this product including: (1) Manual takeoff and landing
procedures; (2) Object detection using a real-life training
model; (3) Distance detection of specific objects in
correlation to drone position. This paper also demonstrates
research of formulas and background information that is
crucial to the success of this product

Index Terms — Aircraft navigation, artificial intelligence,
LIDAR, object recognition

INTRODUCTION

In recent years, a lot of work has been done in the
area of artificial intelligence and quadcopter drone
development. Neural networks and AI training has
piqued a lot of interest from researchers due to its near
limitless applications in human lives. A primary goal is
to make the machines people deal with every day more
accessible by facilitating a natural method of
communication between humans and computers.
Additionally, commercial and consumer grade drones
and Light Detection and Ranging (LiDAR) technology
have developed greatly over the past several decades.
Today the aerial robots find many uses in areas like
environmental scanning, recreation, and military
operations. The group wishes to combine these two
impressive technologies together; using machine
learning and LiDAR technology to create a quadcopter
that can detect a set of given targets. The drone has the
capabilities to fly and detect several different objects
with its sensor. Our drone has the standard design of a
quadcopter and the focal point of this project is the
machine learning software for its visual and sensory
analysis. A second major focus is the optics of the

project and how the infrared sensors communicate with
the machine learning software to determine the
placement of targets. Machine learning is a concept that
has gained a lot of enthusiastic attention in the last
decade and has a wide variety of applications. Machine
learning is the basis of artificial intelligence, which is
developed with a neural network mapping within the
machine learning code. This neural network allows for
the machine’s code to learn according to categories that
we will feed the machine via its optical design.

ENGINEERING SPECIFICATIONS

The following specifications are essential to the success
of this drone and also required as part of the senior
design curriculum:

1. The drone must be able to fly in all three axes
2. The system should be able to be controlled by

an external computer if necessary.
3. The system should be able to hover and

maintain a single position in air for one minute
or more.

4. The system should be able to pass pre-arm
checks for safety and physical purposes

5. The system should have sensors that are able to
detect and measure the distance of objects at
least 0.75 m away

6. The system should be able to accurately and
consistently identify objects 4 m away from its
cameras.

The above specifications have been met using
multiple types of techniques involving hardware and
software, more specifically in the aspects of machine
learning since the drone model needed to be trained to
detect objects prior to achieving flight.

TESTING STANDARDS

The group needed to be able to test the efficiency of
the object detection system working with the infrared
sensors. The primary workflow of the system was to
have the distance scanner look for an object, and
whenever it detected something within a certain range,
only then would the camera activate and the AI would
make a prediction on whether one of the targets was in
view. The group hypothesized that this would reduce the
needed computational power and speed up the total
runtime of the object detection by reducing the number
of computations needed.
These characteristics would be tested using the

following process: two separate sets of the object
recognition software would be done. The first would be
done without the distance scanner, and the AI would



continually test whether or not it could see an object for
every frame of the continuously running camera. The
second set would use the LiDAR scanner, and it would
only make a prediction when the sensor detected that an
object was nearby. In each of these sets, each of the
three unique targets that the AI was trained with would
be placed in front of the camera and the processing time
and confidence of the model was tested. As was
predicted, the test that used the LiDAR scanner reduced
the overall computational load on the processor, and
reduced the number of unnecessary computations were
the AI would try to look for an object when nothing was
in front of it.

DESIGN SPECIFICATIONS

The software component of the project consists of
three parts: training, simulation, and real-world
application. Training is done through the collective
effort of three softwares: PyTorch, Gazebo, and PX4.
The PyTorch framework is used in conjunction with the
open source model we have chosen. Research and
testing models with low level abstraction gave us
insight into what qualities we should really be looking
for. The YOLO object detection system is the model
that caught our eye. This system is based in C, as it
utilizes the Darknet neural network, but there was a
work-around. We were able to find the Computer Vision
tool platform Roboflow. The platform’s site allows
management of public custom datasets, as well as
deployment of a variety of models. The packages they
supply include a YOLOv8 model that makes use of
PyTorch instead of Darknet. This meant we wouldn’t
stray away from our initial testing and research. Moving
forward on this platform, our first step was to create an
imageset to train on. We made use of the annotation tool
MakeSense. This tool allowed us to upload images of
the objects we are detecting and manually annotate each
image with a bounding box. Then once every image is
annotated appropriately, the site allows you to export in
a zip file formatted specifically for the YOLO model.
Finally, making use of the Roboflow platform, we
uploaded our imageset and ran it through our open
source YOLO model. Using this model we were looking
to reach a validation accuracy of 90% or higher. We
were successful in this aspect and are confident that the
model we trained can produce accurate predictions on
our personal computer.

Figure 1: PyTorch Integration Table

Configuring the drone based on how well the model
performs. The model’s performance is heavily affected
by the computing power of the Raspberry PI, so
adjustments will need to be made during testing.

On the navigation end, we experimented with the
control system of PX4 within the simulation
environment for potential/future autonomous flight
implementation. Movement is basic, as altitude will not
be a variable within our project, but gaining an
understanding of the physics environment and how to
track velocity/position components of the drone is
extremely important. Given that Gazebo and PX4
support each other, the resources they provide within
their Guides/APIs is essential to furthering our
understanding of how the drone reacts to its
environment.

Figure 2: PX4 MAVLink Correlation

INFRARED SENSING

For optical design, the team wanted to ensure that the
drone would not collide with large objects in the
environment. So, a series of infrared optical sensors are
placed around the drone in addition to a distance sensor
that rotates continuously, acting similar to a light
detection and ranging (LiDAR) scanner



The spinning distance scanner is placed on the bottom
of the drone. However, this will lead to the four drone
legs blocking any distance information. To supplement
this, four static proximity sensors are placed onto the
legs of the drone. For these sensors, the power will
decrease exponentially as a function of distance, and the
farther the object away is. The rate of the power loss
depends on the divergence of the LED from the optical
axis. This means that their range is quite poor, and the
group decided to ensure their range is about 0.3 m.

For the distance sensor, the group wanted a
continuously rotating module that would measure the
distances of objects in the environment. Although this
system is currently only used for nearby object
detection, a more advanced system could have a much
higher range with more accurate data, and could be used
in conjunction with the object recognition AI to create
better flight paths.

These are all assuming an ideal scenario, and the
surface of the object is perfectly flat with the surface
normal vector facing the sensor. Despite this, these
assumptions are still useful for getting a close
approximation to the distance.

Figure 3: Pulsed time of flight Imaging

The basic diagram of the time of flight circuit, as
shown in Figure 4, demonstrates how Since time of
flight requires very fast signal processing, the group
found it best to analyze the input using an analog signal
rather than a digital one to reduce processing power
requirements. This drastically reduces the required
clock speed from signals in the range of gigahertz to
those in the megahertz. [6]

Figure 4: Time of flight circuit diagram (Note: this circuit is
simplified and missing several components for the sake of

visualization)

The laser scanning system uses the input of the
modulator, and then compares that to the signal being
received by the sensor. This generates a lower frequency
output, and by analyzing the average of the signals, the
time of flight, and therefore the object distance, can be
calculated. Alternative configurations split the light into
two beams, comparing the sent and received signal
directly. This is a more accurate way to directly measure
the difference in signal between the light exiting the
laser and the light being reflected back to the sensor.
This ultimately gives a more accurate distance reading.
However, this would dramatically reduce the power of
the light exiting the system and reflecting back. Partial
deflectors exist, but higher end optics like this can often
drive up cost.

In general, direct time of flight imaging tends to be
quite low resolution compared to other methods of
distance sensing. Typically, a LIDAR scanner may have
a significantly more powerful laser diode and larger
optics, and more sophisticated electronics to increase
this resolution. Though, given the time, budget, and size
constraints of this project, the group chose their current
model.

CAMERA MODULE

The next focus is on the eyes of the drone, its visual
system, which starts with the input signals received
from a camera that is attached to the drone. There are
two cameras attached to the drone, one facing the z axis
of the drone and one facing the x axis of the drone. This
will allow the drone to see forwards and below it. For
our vision navigation drone test, we are requiring the
drone to simply navigate in multiple directions as this is
a prototype.. This is the reason why we choose to use
two drones. One to detect obstacles, such as balloons in
its x axis view and another to find its proper landing
target labeled on the target below it. This vision
navigation machine learning technique is expanded



more within the optics and software sections
respectively.

When choosing a camera, it is important to consider
the constraints on sensor type, pixel resolution and
latency, the built in camera features, the lens and the
video transmitter that is attached.For vision navigation
drones, the cameras usually have a CMOS or a CCD
image sensor inside. CMOS cameras are less expensive
than CCD cameras but lack the ability to react quickly
to changes in low light. This is important to take into
account when choosing the camera for our drone
because any sudden change in light that causes a lack of
visibility can cause confusion within the drone flight
controller system and cause a crash. A CCD camera will
give us the best result for a vision navigation drone. On
the topic of resolution, the higher the resolution, the
slower the latency so this is also a large topic to dive
deeper in when looking at the type of resolution we
would like our vision navigation drone to have.

The RaspberryPi 4 Model B is used to handle our
trained YOLOv8 model. We chose this model for
several purposes. There are many resources available
for its implementation, and is widely used within the
subject area. This makes the build process much
smoother for us because it alleviates a lot of the hassle
of working with plugins or packages to get a fully
trained model onto our drone. With out of box support,
and the Raspberry Pi camera module we selected, it also
gives us the ability for “real-time inferences.”After
training is completed, the model is deployed onto the
Raspberry PI and allows for onboard image processing
and classification, getting full use of our YOLO model.
The setup for this is to first install the 64-bit Ubuntu OS
onto the board computer;the model will only support
64-bit ARM so this is required. Once the OS is set up,
Roboflow installation is done via pip, a package
installer for Python. After that, the camera module had
to be enabled via the Raspberry Pi Config. Next we
installed the package manager MiniConda. The most
important packages we installed were OpenCV, for
video manipulation, PyDrive, for file management with
Google Drive, and RPi.GPIO, used for utilizing the
GPIO pins on the Raspberry Pi. After this we were set
to implement our YOLO model and make predictions.
The PixHawk Flight Controller is crucial for sending
data to the camera, which is connected to the Raspberry
Pi motherboard.This camera provides high efficiency
and is currently known as the best flight controller to be
implemented for a civilian used vision navigation drone.

The PixHawk will allow user interfacing in which the
region of interest can be chosen via the camera mapping
provided by the PiCam. As described by the figure

below, there are in fact multiple different function calls
which are used to set values for altitude, takeoff
markers, radian to degree conversion and vice versa, as
well as simple device connection.

Figure 5: PixHawk Communication Flow Chart

The above figure describes the flow in which the
PixHawk module determines specific variables
depending on the data being inputted via the camera
module. This module is crucial to ensuring that all
communications are recorded and that all functions are
integrated correctly.

OBJECT DETECTION

The process of testing the object detection software
was done using multiple model creations and then each
model was trained based on two sets of objects. Initially,
basic red, green, and blue cubes were used for training
and proceeding that was the implementation of more
complex items. These included an orange water bottle, a
brown stuffed animal, and a blue stuffed animal. The
change in colors allowed a wider scale of object
detection as the process became more complex with
colors away from the typical RGB field.

The implementation of the object detection model
consists of three stages: data collection, training, and
inferences. The data collection portion revolves around
creating an annotated imageset that the model can
validate its training runs on. Our first step was recording
dynamic footage of the objects that will be used in our
obstacle course. We recorded about a minute worth of
footage total for our three objects. This footage was
split into its individual frames, ending up with 600
images. We packaged them within a folder to be
uploaded to the MakeSense tool. Once in the
MakeSense tool, we manually went through each image
and labeled them accordingly. The dataset was then
expanded using data augmentations to produce “new”
instances. Finally, the imageset was exported in YOLO
format, concluding the data collection stage.

The training stage starts with uploading our newly
imageset to the Roboflow website. The platform



provides an open-source notebook that we were able to
augment to take our custom imageset. Training was
done with a batch size of 16 and 25 epochs. This was
more than enough for the complexity of our imageset.
Results proved this to be the suitable configuration as
we ended with over 95% mAP for all of our predictions.
After the training is finished, the Roboflow package
allows us to upload our trained model to their platform
to be accessible at any time. Shown below are results
from our training stage. We can see how loss and mAP
progressed over the 25 epochs.

Figure 6: Training Batch Result

The figure below are some of the resulting predictions
taken from a random batch of images. Each image
within the batch has the classification along with the
confidence percentage for each.

Figure 7: Training Batch Result

Inference stage is essentially the testing phase for our
object detection. The Roboflow platform again comes in
handy since we saved our trained model to their servers.
We’re able to use pip to install their packages locally
and download our model. Actively making predictions
on images of objects is done by referencing the
Roboflow api and passing images into the prediction
function under our model.

The predictions can be saved, displayed, or analyzed
by calling other functions within the Roboflow package.
This was all done locally in a WSL environment, but
deployment of the model onto the Raspberry Pi is
possible through their inference server Docker
container. This is the most important step in translating
our work from a local machine to the Pi device. We did
run into performance issues regarding the model. The
model was very intense on the Raspberry Pi. This was
obvious in hindsight, as for the most part, machine
learning is accelerated by GPU utilization. We
combatted this by working in unison with our LiDAR
sensors, and limited inferences to only when objects are
physically in front of the camera. The results of our trial
runs are displayed below in Fig. 8. With nearly 500
predictions being made, only 25 were either mislabeled,
too low for our confidence threshold, or not detected at
all.

Error Rate Over V2 Runs

Predictions Errors Error Rate

499 25 5.01%

Figure 8: Total Error Rate % from our Trial Runs

PYTHON PROGRAMMING

Python is one of the most popular programming
languages, and reasonably so. Python values
accessibility above all else with its simplified syntax
and many abundance of useful packages and libraries.
Python isn’t limited to a single OS, as it can be run on
Linux, macOS, Windows, Solaris, etc.. Pair this with the
fact that Python scripts can be made to run at a much
faster rate with a GPU, this makes it a great
money-saver for companies that don’t want to invest in
cloud services from companies like Microsoft (Azure),
Amazon (AWS), Google (Google Cloud). GPUs can
cover some of the ground lost by not investing in these
more expensive “Machine Learning as a Service”
options without losing out on too much productivity.
The possibility of GPU utilization is a big contributor to
a project as well. We are using a system with a NVIDIA
RTX 3060ti, which has 4864 CUDA Cores, and 152
Tensor Cores. This was valuable in our initial training,
but we were able to train our model in a Jupyter
Notebook, saving our own resources.



PyTorch and TensorFlow are the two machine
learning frameworks that are popular in today’s world.
Those were also the two options given to use by the
original sponsor as well. Our sponsor highly advised us
to utilize PyTorch though. This was because the
resources they had already dedicated to their own
project were done using PyTorch. That meant that we
would have references for moving forward with our
project. Doing our own research though, we found that
there were more reasons to select PyTorch over
TensorFlow. One was because of the ease of
implementation. PyTorch is described as being more
in-line with the original Python libraries. We believe
this makes Python ‘easier’ to learn when you already
have knowledge of Python. Python is also known as an
‘easy’ language to learn compared to others. The
community backing PyTorch is also massive and
out-matches TensorFlow. For our own research, this
would be much more advantageous as this is our first
time utilizing a framework at all. We can really make
use of the open-source packages that are out there to
improve our convolutional neural network. This was
evident when we came across the YOLO model. We
were able to find an implementation of it using PyTorch.

We are using Anaconda to manage our packages and
train our model in our simulation system. This was
recommended mostly for its access to a large number of
data science packages, which should aid us in training
our model. PIP is necessary for PyTorch installation
onto the Raspberry Pi but will be used in sync with
Anaconda to handle package installation. Using PIP
within the Anaconda environment will just install the
packages as normal with no complications tied to it.
Anaconda also grants the ability to update all packages
with a single command. The package management of
Anaconda will make handling the model safer and
easier.

Figure 9: QFlightControl Circuit Diagram

The above diagram is used to help determine full
attitude control when it comes to integration of Python
scripts into the flight control module. The variable q
represents the full attitude control necessary for

communication between the script and the actions it is
requesting.

SAFETY CONSTRAINTS

The team also needed to consider the safety
constraints of the system, Given that a drone can be
quite a sensitive system, there are many mass and
weight distribution requirements that the group must
face to construct a functioning drone. Considering the
construction of the drone, the robot is constructed with
four legs (or arms) with the PCB board in the middle
connecting the four legs. The four legs will each have
brushless motors attached to the top plane (or y-plane in
space) of each leg.

On the top of each motor, there is a set of two
propellers. The propellers are the mechanical aspect of
the robot that catches the wind and allows movement in
space and time. The quadcopter has a set of two
propellers, two that connect clockwise and two that
connect counterclockwise. These set of propellers are a
pair by legs, therefore one pair of legs is connected via
one node and set as the forward propellers and the other
set of legs is connected via one node and set as the
backwards propellers. The propellers will move at a
high speed of anywhere between 8000rpm to 9000 rpm.
The propellers are to be of the highest constraint
because at this high speed and the novelcy of the team
with robot building, it must be held to the utmost safety.

The way our team will solve the propeller safety
factor that will ensure safety is have propeller protector
rings. Propellers are the aerological part of the robot that
allows the drone to fly. The propellers are attached to
the brushless motors. There are four motors on the end
of each leg of the drone with two propellers attached to
the end of the motor, this allows flight upwards,
downwards, forward and backwards. In order for the
drone to fly forward, the flight controller speeds up the
designated corresponding brushless motors which are
attached to two out of the four legs of the drone that
share the same node. The two legs that are used for
movement must be connected in series. The two
brushless motors that are attached to these
corresponding legs move at a faster rate of about ten
times while the two back motors stay at a slower speed
or at the speed it was prior to forward / backwards / side
command. This causes the two front propellers to go
faster, therefore propelling the drone in the direction in
space that was determined by the controller.

PHYSICAL CONSTRAINTS



The creation of the drone has multiple constraints that
the group must work around in order for the project to
be successful. This section contains lists of the different
types of challenges that a completed drone will face in
order to have a proper flight. These include the size of
the system, the weight, and safety concerns among
others. Safety is a key factor when creating a drone, and
particularly so with an autonomous one. The drone
should avoid making any collisions with humans or
other private property. This is one of the functions of the
object detection system.

Most of the other restrictions are due to the physical
and technological limitations of the system. These
factors include things like the required size, weight and
thrust of the system. With any flying object, and
especially a hovering object, all of these must be
balanced in perfect harmony. Otherwise, the entire
system risks catastrophic failure. An imbalance can
easily lead to too much or too little lift, resulting in the
whole system crashing. Any accidents at significant
speeds and heights may completely destroy the flight
systems as well as any number of other component
systems. It is for these reasons that these constraints are
considered by the group to be some of the most
important in the entire project. Above all else, these
constraints will make all of the difference between the
success or the total failure during the final project and
presentations. In order to achieve the expected flight
height while also achieving battery life, the battery is
another key component needed for extensive research
for reliability, durability and safety. Our team is looking
to start with a battery that is around 2300-2300 KV with
a 3s battery voltage applied to it. This will cause the
motors attached to each leg of the drone to spin at about
28,980rpm. More calculations and research within the
area will need to be done and should be the team's main
focus moving forward.

The battery is the key component for reliability
because each motor, the vision system using the camera,
the control system and the microcontroller of a
raspberry pi will all rely on its efficiency to provide the
correct voltage to each component for proper flight
control and safety. The battery will also be the
component that is causing the most heat. These thermo
waves do need to be controlled in order to ensure that
the robot does not set on fire neither does it melt or burn
any of the wires or components. This aspect of the robot
does require a project constraint of heat omission and
will require great attention to prevent fires. For safety,
the team will purchase a fire casing to enclose the
battery chosen as well as a fireproof bag to place the
drone in to prevent any spread of the fire. The team

should also be aware of the closest fire extinguisher
near the testing lab and have their devices in hand to
call on emergency if needed. To address some of these
concerns, there should also be at least two people in the
testing lab at a time when performing testing.

NAVIGATION CONSTRAINTS

For the stretch goal of this project, autonomous
navigation became a potential additive to the overall
functionality of the prototype. Beyond the camera
features, there are three other features that are crucial to
building a successful drone that has visual navigation
abilities. These include awareness, basic navigation, and
expanded navigation. With awareness, the drone needs
to have a reference to the edges of the testing
environment, as without any insight on that, crashes are
much more likely to occur. Adding to the simple object
detection for the shapes hung from the top of the mesh
cage for testing, the drone shall be able to detect the
walls using the same mechanisms.Basic and expanded
navigation are simple to integrate, and for this type of
project, drastic altitude changes aren’t necessary. For
expanded navigation such as “flips”, that kind of
movement would be rather detrimental for the drone
especially in terms of detecting objects.

In all types of flight, there are many natural
occurrences that can easily cause the vehicle to tilt in
multiple directions. Steady wind speeds, random wind
gusts, or any number of other forms of environmental
turbulence can influence the state of the drone’s flight at
all times. The infographic describes how the blade
direction can affect speed and altitude based on the tilt
angle at any given time. If the blade of the propeller is
traveling in a climbing direction, such as where the
blades are exerting upward force, the drone shall
increase in altitude within the same direction as the tilt.
The same theory also applies to the retracting blade
direction. Understanding these concepts is crucial to
fine tuning software to offset any unwanted tilt, as well
as to correctly fly in the case where tilt is needed to
reach a given object.

CONCLUSION

The plans for the construction of the visual navigation
drone show incredible promise. Following extensive
research, the group has discovered several methods of
developing an artificial intelligence with the capabilities
to recognize specific objects in an area. They have also
developed plans for ensuring the safety of the drone.
The group also sees a great potential if it were to be
used in a more commercial setting, where the scope,
scale, and budget would be far greater. With



significantly more time and processing power available
to the team, the image recognition AI could be trained
to recognize more objects, with a greater efficiency. In
such a setting, the drone could recognize more everyday
objects rather than specific targets. It would be able to
recognize trees, buildings, or even people. This could be
combined with more mature instructions, where the
drone can fly by also changing its height, and not just
flying in a rigid two dimensional plane.

Eventually, this drone could be integrated with voice
commands, and the drone would be able to carry out
specific tasks spoken to it by a human.

Also, with higher quality parts, the image detection
system could be made to be far more mature. With a
larger budget, the LiDAR system could become able to
create a three dimensional map of the environment. This
would require much more expensive parts, and circuit
components of a higher quality. The scanning system
would have to rotate in three dimensions, and there
would have to be enough processing power to
accommodate this exponential increase in data. If the
technology would be able to mature to this stage, it
could be combined with the image acquisition
algorithm. The system would then be able to tell exactly
where an object is in its environment, its distance to it.
From here, it could make calculations for the expected
flight time, analyzing possible flight patterns and speeds
to know exactly when it will arrive at the target. This
fully matured three dimensional map could be used for
very precise flight paths to specific objects, avoiding all
objects and people efficiently. A more efficient flight
path can have shorter completion times, and more
satisfied customers for a potential business.

ACKNOWLEDGEMENT

The group would like to thank the UCF ECE
department for their generous financial assistance with
the project.

BIOGRAPHY

Derek Murdza will graduate as a Computer Engineer
in May of 2023. He will work with Lockheed Martin as
an Integration and Test Engineer Associate. He plans to
focus on a Master’s in Engineering Management shortly
after.

Cannen Carpenter will graduate as a Computer
Engineer in May of 2023. He will work at Ernst &
Young as a Technology Consultant after interning there
in the previous summer. He plans to use the many
avenues available to explore possible career paths.

Jazmine Roman will graduate as an Electrical
Engineer in May of 2023. She has worked with Siemens
Energy as a student contractor since May 2019 within
the service groups of sales, technology and operations.
After graduation, she will work with Leidos Power and
Delivery as a Distribution Planning and Analysis
Engineer, upgrading the power grid. She plans to work
towards her Professional Engineering License while
pursuing her interest in Cyber Security for the Smart
Grid.

Kevin Nilsen will graduate as a Photonic Science and
Engineer in May of 2023. He plans to continue his
studies by pursuing a PhD in Optics starting in the Fall
semester of 2023.

REFERENCES

1. Qi, Yuankai, et al. "Object-and-action aware
model for visual language navigation."
European Conference on Computer Vision.
Springer, Cham, 2020
https://link.springer.com/chapter/10.1007/978-
3-030-58607-2_18#citeas.

2. Anderson, Peter, et al. "Sim-to-real transfer for
vision-and-language navigation." Conference
on Robot Learning. PMLR, 2021
https://arxiv.org/pdf/1904.04195.pdf.

3. Tan, Hao, Licheng Yu, and Mohit Bansal.
"Learning to navigate unseen environments:
Back translation with environmental dropout."
arXiv preprint arXiv:1904.04195 (2019)
https://arxiv.org/pdf/1904.04195.pdf.

4. Zhu, Wanrong, et al. "Diagnosing
vision-and-language navigation: What really
matters." arXiv preprint arXiv:2103.16561
(2021) https://arxiv.org/abs/2103.16561.

5. Upadhyay J, Rawat A, Deb D. Multiple Drone
Navigation and Formation Using Selective
Target Tracking-Based Computer Vision.
Electronics. 2021; 10(17):2125.
https://doi.org/10.3390/electronics10172125

6. Lineykin, Simon. “Basic Perception.” Manual
Mobile Robots and Multi-Robot Systems -
Motion-Planning, Communication, and
Swarming. Chichester, UK: John Wiley &
Sons, 2020. 1–1. Web.

https://arxiv.org/abs/2103.16561
https://doi.org/10.3390/electronics10172125

